
Securing Embedded Devices through Obfuscation
with Predictable Size and Execution Overhead

Leif Brötzmann
Kiel University, Kiel, Germany

lb@bytecode.re

Patrick Rathje
Kiel University, Kiel, Germany

pra@informatik.uni-kiel.de

Olaf Landsiedel
Kiel University, Kiel, Germany

Chalmers University of
Technology, Gothenburg, Sweden

ol@informatik.uni-kiel.de

Abstract
Embedded devices compute and store data locally. Thus,

contained sensitive data or code requires extra layers of secu-
rity. In addition to hardware protection, software obfuscation
allows for added code and data protection. Available obfus-
cation techniques, however, are complex, and their resource
costs are difficult to predict, rendering them hard to deploy
to resource-constrained devices. This holds especially when
multiple techniques are combined. This work introduces ob-
fuscation with predictable size and runtime overhead and
tailors software obfuscation to the inherent resource limita-
tions of embedded devices. Accurate predictions of size and
execution overhead allow dynamic obfuscation utilizing all
of the sparse resources. The implemented framework com-
bines several predictable obfuscation techniques with granu-
lar control over their parameters, thus allowing precise con-
trol over the resulting resource cost. Our evaluations com-
pare our techniques to state-of-the-art approaches, attesting
to the precise prediction of our framework. However, the
current implementation is best used on small programs or
selected parts, showing at least twice the overhead.

1 Introduction
Integrated and deployed on-site, embedded devices typ-

ically operate in untrusted environments and inherently ex-
pose their hardware and possibly code to attackers. Crypto-
graphic keys, copyrighted material, or proprietary algorithms
thus require additional protection. While some platforms
provide hardware protection schemes, they are sparsely
available and commonly provide specialized protection, like
storage for cryptographic keys. However, even on platforms
that offer a wide range of hardware mechanisms, additional
protection against attacks on the software layer is desirable,
as attackers may eventually bypass hardware security. Soft-
ware Obfuscation aims to harden the software component by

disguising the actual instructions that are executed and the
data that is operated on. Obfuscation techniques utilize a
wide range of approaches, such as scrambling the flow of in-
structions or hiding calculations using equivalent (but more
complex) formulas. In all cases, obfuscation rather hardens
than protects the device from attacks, forcing attackers to use
more resources and increasing the costs of attacks.

For embedded devices, runtime and size overhead are of
great importance. However, existing obfuscation approaches
cannot calculate the expected overhead of individual obfus-
cation runs. Consequently, the obfuscated program can be
too large to fit into the device’s memory or fail to maintain
the timing requirements dictated by the application. This
holds in particular for obfuscation methods employing ran-
domness for device-specific obfuscation. Hence, even if one
obfuscation meets the requirements, there is no guarantee for
its subsequent execution: simple changes to the code might
exceed bounds and require reconfiguration. At the same
time, free memory could allow for additional obfuscation to
strengthen security.

We argue that software obfuscation is a viable method for
securing code, especially on embedded devices, yet, the ob-
fuscation needs to be tailored toward the inherent resource
constraints. For this reason, we introduce the concept of
Predictable Obfuscation, allowing obfuscation techniques to
predict bounds accurately. Consequently, our approach en-
ables dynamic combinations and configurations of different
obfuscation techniques to maximize security within given
constraints. Overall, the contributions of this paper summa-
rize as follows:

1. We establish the concept of Predictable Obfuscation.

2. Our open-source framework implements several tech-
niques targeting ARM-Thumb2 obfuscation.

3. Our evaluation attests to the framework’s ability for dy-
namic obfuscation and compares it to state-of-the-art
techniques.

The remainder of this paper continues with the background
in Section 2 and related work in Section 3. Section 4 then
introduces the concept of Predictable Obfuscation and de-
scribes its implementation in Section 5 and Section 6. Sec-
tion 7 illustrates selected techniques we adjust to the frame-
work and evaluates their resource overheads in Section 8.
Section 9 reflects on the results and possible future improve-
ments. Finally, Section 10 concludes this work.

2 Background
Obfuscation describes transforming programs into se-

mantically equivalent programs while trying to hide their in-
herent secrets. In theory, perfect obfuscation aims for black-
box properties [2], i.e., full access to the obfuscated program
only provides as much information as access to an oracle.
Unfortunately, this property is impossible to achieve in gen-
eral. In practice, techniques with weaker guarantees are used
and studied for their usefulness in hindering attackers. Stan-
dard techniques are proposed [1, 6] and result in academic
projects like Tigress [4] and Obfuscator-LLVM [11] as well
as commercial obfuscation tools.

Unlike traditional compiler passes, obfuscation tech-
niques are not designed to optimize programs for resource
cost: For one, they also allow randomization to strengthen
the security benefits [17]. Every technique aims to for-
tify against specific attacks and runs as an obfuscation pass.
Hence, combining different techniques, or passes, boosts (in
theory) protection against a broader range of attacks. How-
ever, optimizing compiler passes is a complex problem, and
related research [10] suggests that combining obfuscation
passes requires additional considerations: suboptimal pass
scheduling may even weaken the resulting security. With the
existing tools, predicting the overhead of combined obfusca-
tion techniques is difficult [9].

3 Related Work
While there are plenty of commercial state-of-the-art ob-

fuscators [12, 14, 8] few freely available ones target native
code output. Academic-based but closed-source tools like
Tigress [4], and open-source Obfuscator-LLVM [11], an ob-
fuscator written for usable and available obfuscation, differ
from this work as they do not estimate the resulting over-
head. Loki [13], an obfuscator designed to resist state-of-the-
art automated attacks, provides experimental evaluations of
their overhead compared to other tools but does not introduce
any estimated resource boundaries for arbitrary programs.
Because of randomization, in practice, overhead varies for
different obfuscation runs. So far, research on solving the
problem of expensive obfuscation techniques given restricted
resources [9] focuses on optimizing the obfuscation process
to produce smaller, more efficient, but similarly secure out-
put. However, the converse, i.e., a high level of security
given specific resource limitations, remains open.

4 Predictable Obfuscation
The primary idea of this work lies in the prediction of

obfuscation passes, allowing precise guarantees about the
size and runtime overhead of obfuscation. We introduce
this prediction property as Predictable Obfuscation and rea-
son about the changes in resource cost caused by the non-
deterministic code transformations. Based on our determin-
istic model using an abstraction of program properties, we
derive a methodology for obfuscation, allowing more in-
formed decisions on resource cost and security trade-offs.
Finally, we implement the concept of predictable obfusca-
tion with different techniques as a framework for ARM ob-
fuscation.

We aim to reason about the resource cost of applied ob-
fuscation passes concerning a specific metric M such as out-

put size, instructions executed for specific paths, and energy
consumption. Therefore, we model the application of sev-
eral obfuscation passes concerning resource costs. Our ab-
stract model starts with an intermediate representation of a
program as input. We denote the set of intermediate repre-
sentations, i.e., possible programs, with X. We assume that
programs halt eventually.

We indicate the set of inputs for programs as I. Given this
input, the execution of the program should be deterministic
and device-agnostic. Hence, every input i∈ I encodes the ac-
tual program input, a randomization seed, and necessary in-
formation of the execution environment, e.g., device-specific
hardware identifiers.

Based on a metric for resources M, we derive a cost func-
tion that measures the inherent resource cost of a program
x ∈ X under a specific input I ∈ I as: CostM : X× I → R.
Without any prediction, an algorithm can take a program,
compile it to native code, and measure the corresponding re-
source cost under the given input.

However, as we target prediction without the actual com-
pilation or execution, we introduce the concept of proper-
ties characterizing a program’s execution. We then use those
properties, like the number of mathematical operations or ba-
sic blocks, to derive its final resource cost. We introduce P
as the set of properties and associate a function PropsP : X×
I→ N|P| that computes property values for a given program
and input. For every metric M, we can find a set of prop-
erties P and an associated function EstimateM,P : N|P| → R
such that: EstimateM,P(PropsP(x, i)) =CostM(x, i) holds for
all x ∈ X and all i ∈ I, i.e., we find properties and an estima-
tion function such that we can estimate the actual resource
cost solely based on the properties. In the most straightfor-
ward case, we can directly assign resource costs as property
values. Following the motivation, however, the objective is
to find properties that encode the resource cost conceptually,
capturing the effect of obfuscation passes.

Now within this model, we formalize Predictable Obfus-
cation: Given a metric M, a set of properties P and an esti-
mation function EstimateM,P, a tuple (o : X→ X, p : N|P| →
N|P|) is called a Predictable Obfuscation Pass if it holds that:

CostM(o(x), i) = EstimateM,P(p(PropsP(x, i)))

for every x ∈ X and every i ∈ I. Hence, for the obfusca-
tion established by o, the function p encodes the change in
its properties’ values so that the resource cost can still be es-
timated. Note that the obfuscation pass does not rely on any
particular program input. Because the obfuscated program is
again a valid program, we can combine any sequence of Pre-
dictable Obfuscation Passes and apply it to our initial pro-
gram (assuming we find a suitable set of properties and an
estimation function).

With our model of predictable obfuscation, we decouple
the estimation of resources from the actual obfuscation. A
crucial criterion for applicable predictable obfuscation is that
the properties, the estimation function, and the obfuscation
passes are defined such that the calculation of the costs is
less expensive than the actual application of the obfuscation

passes and the execution of the resulting program. For this
reason, we introduce algebraic formulas to describe the ef-
fect on the program’s property values after extracting the ini-
tial properties from the input program once. Hence, given
the respective predictable obfuscation passes, we efficiently
calculate the resource costs of any combination to a respec-
tive program.

5 Framework Design
Predictable Obfuscation builds on the idea that we can

model the influence of particular obfuscation passes on re-
source consumption. Hence, the obfuscation can be cus-
tomized to given constraints based on a mathematical ab-
straction rather than potentially expensive benchmarking.
This section now derives guidelines for realizing our frame-
work based on this theoretic foundation.

Intermediate Representation as Input: All properties
of a program that an obfuscation technique may modify are
quantified to estimate the overhead of a program. The in-
struction count and static data for size, the depth of nested
loops for runtime, and the type of instructions for energy
consumption are exemplary metrics. For this, we generate
an intermediate representation of the program that provides
all relevant information about the program’s properties. The
obfuscation passes run on an intermediate representation of
the input program. Compared to existing intermediate repre-
sentation and compilation tooling, our representation is de-
signed with the predictability definitions in mind. The repre-
sentation thus guarantees the translation process and output
of native code follow the abstract properties.

Affine Overhead Formulas: From the fundamental
properties of an input program, the framework needs to esti-
mate the change in the properties for each obfuscation pass.
Hence, we require exact algorithms that model the influence
of modifications on the program’s properties. Separating the
overhead calculations from the actual application, the frame-
work can efficiently and precisely predict the impact of ob-
fuscation passes. For our framework, we assume an influ-
ence that can be modeled by an affine transformation of the
property vector, resulting in an efficient estimation process.

Modular Design: Combining several different obfusca-
tion techniques usually hardens the resulting obfuscation.
Hence, we design the framework such that the program and
overhead calculations are correct regardless of the order and
amount of applied obfuscation passes.

Native Format as Output: Resource constraints refer to
the final output in native code; our framework must know
the final native program to make the overhead calculations
meaningful. Thus, the framework further tracks the effect on
the final program for each pass based on the properties of the
intermediate representation. Finally, the framework outputs
native code directly, achieving complete control without any
postprocessing that could invalidate overhead calculations.

These requirements have substantial implications for the
usability of our approach. As we require input in the form
of an intermediate representation, we can only calculate the
overhead of compiled programs. Hence, the resulting size
depends on the compiler and settings like optimizations or
additional compilation parameters. Additionally, the predic-

tions only hold for the compiled output of the framework.
The estimations do not cover overheads caused by the file
format, i.e., when converting the native code to an executable
binary file. Also, when generating higher-level code as out-
put (e.g., LLVM IR), the predictions offer no guarantees for
the final native code due to internal optimizations or rewrites
inside the respective external toolchains.

In addition, the overhead formulas pose a burdensome re-
quirement: Obfuscation techniques are usually complex by
design, and the actual overhead is not ensured to be deter-
ministic. This holds in particular when techniques employ
randomness. To achieve deterministic overhead calculations
in those cases, the techniques require adjustment such that
the changes in the properties of the intermediate representa-
tion are always the same.

6 Implementation
We implement our framework in Java and release it as

open-source.1 Implemented using Java, the framework set-
tles with a subset of Java Bytecode from compiled Java pro-
grams as input. This bytecode is processed and split into
Basic Blocks, which contain intermediate code represented
as graphs. The output is native ARMv7 Thumb2 machine
code. Wrapper code calling the generated machine code is
required to use the output in a program, which we do not
consider in the overhead predictions.

7 Predictable Techniques
With this conceptual framework in mind, we adapt well-

known techniques to demonstrate how to adjust techniques
for the predictable obfuscation framework. Our evalua-
tion then compares those adjustments embedded into our
framework to existing obfuscation frameworks. Generally
speaking, if the behavior of an obfuscation pass can be ex-
pressed correctly using the existing program properties and
applied to the intermediate representation, it can be adjusted
to our predictable obfuscation framework. However, the
predictability becomes less valuable when the deterministic
overhead with prediction is significantly larger than the av-
erage without any prediction. For one, passes that pad their
modifications to match the expected size might introduce a
substantial overhead in terms of code size.

In the following, we introduce several techniques that we
adapted and implemented in our framework:

Mathematical Operation Encoding: Based on mathe-
matical equivalences from Hacker’s Delight [16], mathemat-
ical operations are replaced by fixed, more complex expres-
sions. This technique is also known as Encode Arithmetic.
Some operations have a list of replacements, of which one is
chosen at random each time. While the result of the complex
operations is equivalent, they are complicated to simplify
for decompiler tooling, rendering the analysis more difficult
as the original operations are hidden. Replacing x+ y with
x− ((¬y)+1) is a simple example. This particular transfor-
mation replaces a single mathematical operation with three
mathematical operations (addition, subtraction, logical in-
verse) and one constant (1). We allow prediction for this
obfuscation technique by replacing each mathematical oper-

1https://bytecode.re/obfuscat

ation with the same number of new operations. As a practi-
cal result, we append operations to smaller transformations,
matching the transformation with the most operations.

Literal Encoding: Literals encode constant data in a pro-
gram and often encapsulate critical information. However,
literals can be encoded and decoded at runtime. This literal
encoding thus makes it harder to identify constants, mak-
ing static detection of unique values such as magic numbers
more challenging. An efficient invertible encoding scheme
(e.g., invertible polynomial functions) is chosen to make this
technique predictable, which is then used to encode con-
stants at compile time. Then, a copy of the decode code
with the same overhead is used for each encoded piece of
data. Because every constant is replaced with another con-
stant, the encoded constant, and the decode code, the over-
head is always the same for each constant.

Variable Encoding: Like literals, storing variables in an
encoded format also hardens the security for static attacks,
adding work to analyze their semantics. Encoding variables
means that all references to encoded variables require the
content of the variables to be decoded before usage. We im-
plement Variable Encoding in the same way as Literal En-
coding. Hence, the overhead for each variable store opera-
tion is the overhead of the encoding operations, and the over-
head for each variable load operation is the overhead of the
decoding operations.

Fake Dependencies: Fake dependencies describe the
transformation of a term into an equivalent term by introduc-
ing additional arbitrary ”fake” dependencies. These ”fake”
dependencies reference non-local values connected to the
original term through Opaque predicates [6], which are never
true. As a result, independent of the corresponding values’
actual content, the original term’s semantics are preserved.
This technique prevents partial evaluation by decompilation
tools, i.e., detecting that a term is entirely local and sim-
plifying it to a constant. This transformation adds ”fake”
external or global dependencies (global variables, function
parameters, environment variables), preventing the original
term’s simplification from a non-global context. We apply
this technique to constant values and hence strengthen other
techniques. We enable prediction by using the same trans-
formations on all constants to introduce dependencies to ran-
dom function parameters or global variables. Through this,
the added overhead of the fake dependency is just a load op-
eration per constant and the cost of the chosen predicates.

Bogus Control Flow: The technique of Bogus Control
Flow [5, Chapter 4.3.4] introduces new control flows into
the program’s control flow graph that are never traversed for
any input. Hardened variants include adding modified copies
of the original control flow to these bogus paths. However,
strong opaque predicates are needed to ensure that it is not
straightforward to analyze which path is the original. These
terms always yield a fixed output independent of their in-
put and are used to decide which path to choose. We ap-
ply this technique only to basic blocks with a single succes-
sor for simplified overhead calculations. The respective pass
turns all the unconditional basic blocks into conditional ba-
sic blocks and uses a random predicate from a list of opaque
predicates with the same overhead.

Control Flow Flattening: Control Flow Flattening [15]
aims to obfuscate the control flow by making all basic
blocks predecessor and successor of the same dispatcher ba-
sic block. The added dispatcher basic block reenacts the
original control flow by acquiring information from each
original basic block on which block is supposed to be ex-
ecuted next. Implementing this adds a ”next block” vari-
able to the program. At the end of each obfuscated basic
block, the block sets the variable to its respective successor
block. To prevent using multiple basic blocks to implement
conditional ”next block” assignments, formulas that achieve
the conditional behavior without branching are used instead.
Another method [3] changes the ”next block” variable rel-
ative to the current basic blocks value; this prevents local
analyses of which blocks might be the target of a branch. All
of these formulas have the same overhead, which makes the
overhead of this transformation only dependent on the origi-
nal program’s number of conditional and unconditional basic
blocks. To calculate the overhead, we note that the overhead
in size and runtime are very different compared to previous
cases. For the size of the calculations, the added dispatcher
block is only counted once. As for the runtime calculations,
the amount of times the dispatcher executions depends on
how many basic blocks are executed for the same input in
the program without this technique applied.

Virtualization: Virtualization Obfuscation helps to pro-
tect code by translating it to a custom architecture instead
of its native target. This custom architecture code is then
packed together with an interpreter or simulator that decodes
and executes it natively. Without adjustments, existing tool-
ing usually fails to analyze the custom architecture code [7].
We consider the compilation process of the custom architec-
ture code and the interpreter for the precise overhead calcula-
tions. A straightforward way of implementing this technique
is to assemble each intermediate representation node into a
single custom instruction with the same length. Then the
handlers for each instruction are adjusted for the interpreter
to have the same overhead. This way, the size overhead is
the original program instruction count times the instruction
length added to the size of the interpreter. And the runtime
overhead of the original programs overhead times the over-
head of the handlers and the dispatcher.

next = 1
BB E

var1 = 0
BB1

var1++
BB3

return var1
BB2

goto next
BB D

next = 3 next = var == 24?2:3

var1 = 0
BB1

return var1

var1++

BB2

BB3
var1 == 24

else

next == 1 next == 3
next == 2

Figure 1. A program that counts up to 24 in its original
version (left) and obfuscated version (right) using Con-
trol Flow Flattening. Introducing a variable for the next
block makes the sequence of blocks harder to analyze.

8 Evaluation
To gauge the proposed framework’s overhead, we com-

pare this paper’s implemented framework against Tigress
and Obfuscator-LLVM. For all our test cases, equivalent pro-
grams with similar implementations are used and compiled
for the same target. The outputs of our framework are ARM
Thumb2 native code blobs linked with a stub compiled with
GCC. The Tigress and Obfuscator-LLVM (OLLVM) output
both target Thumb2 for ARMv8-A. No optimization flags are
provided in either case. The obfuscation passes tested for the
comparisons use the same techniques but the details of their
implementation differ. The size is calculated directly from
the output file size. The instructions executed metrics rep-
resent the number of instructions executed for random input
strings with a specific length that would traverse the same
execution path in the original program. To ensure compara-
bility, we provide relative values. The error bars and values
in square brackets denote a measurement’s standard devia-
tion.

8.1 Size Overhead
We evaluate the obfuscated program size using two pro-

grams: An unoptimized CRC32 algorithm and a SHA1 im-
plementation. Both cases demonstrate how the obfusca-
tors perform on small and big programs. With an unob-
fuscated, unoptimized GCC compilation baseline, the ob-
fuscators barely cause an overhead for Bogus Control Flow,
Control Flow Flattening, and Instruction Substitution on the
crc32 program - except for our framework, which causes a
50% size overhead on Instruction Substitution Figure 2.

Figure 2. Size Comparison on CRC32: Our framework
performs similar to others on small programs

For the more extensive SHA1 program, the overhead of
our framework is around three times as much as the compar-
ison obfuscators - again, except for Instruction Substitution,
which is 16 times the size of the unobfuscated baseline and
significantly worse than the other obfuscators by being five
times as much as the OLLVM output and nine times the Ti-
gress output, cf. Figure 3.

Notably, our framework always produces files of the same
size. In contrast, the other two obfuscators slightly vary the
output size when using different random seeds.

Figure 3. Size Comparison on SHA1: Our framework
shows additional overhead on large programs with In-
struction Substitution.

8.2 Execution Overhead
For the execution overhead, the obfuscators are again

compared on small and large programs. Our framework pro-
duces obfuscated code with at least twice to thrice more in-
structions than the other obfuscators for Bogus Control Flow
and Control Flow Flattening. For Instruction Substitution on
CRC32, our framework’s overhead rises to at least five times
the instructions as the other obfuscators, as displayed by Fig-
ure 4, and eight times as much on the more extensive SHA1
program (Figure 5).

Figure 4. Executed Instructions Comparison for ran-
domized 1024 byte inputs on CRC32: Our framework
exhibits additional overhead but remains predictable for
each run.

However, our framework consistently produces the same
number of instructions, independent of the randomization
seed or exact input. This is not the case for the other ob-
fuscators, even though Tigress varies little between the tests.

9 Discussion
The most prominent problem shown by the comparison

is the significant overhead. Especially for large programs,
our approach causes more considerable overhead than the
others. Padding causes most of the unnecessary overhead,
which on the native code level, does nothing but fill space.
For this work, padding is required to enable accurate predic-

Figure 5. Executed Instructions Comparison for ran-
domized 1024 byte inputs on SHA1: Our framework per-
forms worse but exactly the same each run

tions. However, the efficiency is generally improvable using
better compilation models, improving the node-to-assembly
translations, or optimizing costly obfuscations. Especially
having overhead formulas for compiler optimization passes
would be helpful as we then could safely apply optimizations
within the predictable obfuscation framework. Alternatively,
the prediction could compute only the worst-case overhead,
facilitating optimization of the native code while removing
the need for padding in the obfuscation techniques. At the
same time, the padding could be used for further obfuscation
on the assembly level or to replace large paddings with
anti-debugging techniques or anti-tampering checks.

Interesting further research is using the predictable obfus-
cation formulas and resource constraints to solve for possible
obfuscation pass combinations using SMT-based approaches
or more specialized algorithms. Another open question re-
sides in the calculation of runtime overhead. This work set-
tles on the most predictable unit of executed instructions.
However, the concrete number of instructions executed in
actual usage scenarios is less critical. Usually, the appro-
priate characteristic is the overall execution time. While the
number of executed instructions and the execution time of a
program are related, calculating the exact time from the in-
struction count on most architectures is not trivial. Precise
execution time or energy consumption amplifies the need for
more elaborate models. In addition, implementing the Vir-
tual Machine of the Virtualization Obfuscation in a hardware
description language and running it on an FPGA is a method
that could allow for precise time calculations.

10 Conclusions
In the introduced setting of predictable obfuscation, we

derive several techniques with predictable runtime and size
overhead. As formulas precisely describe their overhead, op-
timization algorithms can efficiently derive the best-fitting
combination of several passes for given resource constraints
without applying resource-intensive obfuscation. Conse-
quently, finding suitable techniques to boost security, includ-
ing randomization, becomes more available for resource-
constrained settings, including embedded devices. We im-

plement predictable obfuscation techniques and bundle them
together in our open-source framework. Furthermore, we
calculate the resulting binary size and amount of instructions
executed for a given input through formulas for each obfus-
cation technique. Hence, we efficiently calculate the over-
head of these techniques, even when combined or random-
ized. Our evaluation shows the variation of existing tools
regarding the actual size and runtime overhead for obfusca-
tions. This variance is significant for some techniques and
results in noticeable differences. In comparison, our frame-
work allows precise prediction of the overhead but inherits a
significant overhead (often two times as large).

The primary issue in our design and implementation is
the additional overhead primarily resulting from the same
best and worst-case behavior. Yet, in practice, the worst-case
boundaries are the most interesting regarding upper resource
limitations. As such, we expect future work to concentrate
on the worst-case by removing padding and reducing the
worst-case boundary calculations, accounting for more effi-
cient compilation and optimization, and possibly integrating
the framework into existing toolchains (e.g., LLVM).
11 References
[1] S. Banescu and A. Pretschner. A tutorial on software obfuscation. Adv.

Comput., 108:283–353, 2018.
[2] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P.

Vadhan, and K. Yang. On the (im)possibility of obfuscating programs.
Electron. Colloquium Comput. Complex., TR01, 2001.

[3] J. Cappaert and B. Preneel. A general model for hiding control flow.
In ACM Digital Rights Management Workshop, 2010.

[4] C. Collberg. The tigress c obfuscator. https://tigress.wtf.
[5] C. Collberg and J. Nagra. Surreptitious software - obfuscation, wa-

termarking, and tamperproofing for software protection. In Addison-
Wesley Software Security Series, 2009.

[6] C. Collberg, C. D. Thomborson, and D. Low. A taxonomy of obfus-
cating transformations. 1997.

[7] K. Coogan, G. Lu, and S. K. Debray. Deobfuscation of virtualization-
obfuscated software: a semantics-based approach. In Conference on
Computer and Communications Security, 2011.

[8] Denuvo Software Solutions GmbH. Denuvo Anti-Tamper. https:
//www.denuvo.com.

[9] S. Guelton, A. Guinet, P. Brunet, J. M. M. Caamaño, F. Dagnat, and
N. Szlifierski. Combining obfuscation and optimizations in the real
world. 2018 IEEE 18th International Working Conference on Source
Code Analysis and Manipulation (SCAM), pages 24–33, 2018.

[10] K. Heffner and C. Collberg. The obfuscation executive. volume 3225,
pages 428–440, 09 2004.

[11] P. Junod, J. Rinaldini, J. Wehrli, and J. Michielin. Obfuscator-LLVM –
software protection for the masses. In B. Wyseur, editor, Proceedings
of the IEEE/ACM 1st International Workshop on Software Protection,
SPRO’15, Firenze, Italy, May 19th, 2015, pages 3–9. IEEE, 2015.

[12] Oreans Technologies. Themida – Advanced Windows Software Pro-
tection System. https://www.oreans.com/Themida.php.

[13] M. Schloegel, T. Blazytko, M. Contag, C. Aschermann, J. Basler,
T. Holz, and A. Abbasi. Loki: Hardening code obfuscation against
automated attacks. In USENIX Security Symposium, 2022.

[14] VMProtect Software. VMProtect Software. https://vmpsoft.
com/.

[15] C. Wang, J. S. Davidson, J. V. Hill, and J. C. Knight. Protection of
software-based survivability mechanisms. Foundations of Intrusion
Tolerant Systems, 2003 [Organically Assured and Survivable Infor-
mation Systems], pages 273–282, 2003.

[16] H. S. Warren. Hacker’s delight. 2002.
[17] H. Xu, Y. Zhou, and M. R. Lyu. N-version obfuscation: Impeding

software tampering replication with program diversity, 2015.

